21ABC, Kota Kinabalu, Borneo, 3-5 September 2025

Evolution: Enabling VRLA AGM Performance with Cost Advantage to a Lead Battery System

Naoto Miyake Asia Technical Director Daramic, LLC

naoto.miyake@polypore.net

Presentation Outline

- Motivation and Needs: Partial State of Charge (PSoC) Landscape and Challenge
- Traditional Separator Design in Flooded Lead Batteries (FLB)
- Problem Statement in FLB Acid Stratification Due to PSoC
- Future FLB Separator Design for PSoC
- ☐ Concept of Stratosphere[™]: Solution to Acid Stratification in FLB
- ☐ Improved PSoC Cycle Life and its Mechanism in FLB by Stratosphere™
- ☐ Improved Battery Management System (BMS) Accuracy in FLB by Stratosphere™
- Other Battery Performances by Using StratosphereTM

Motivation: Voice of Customers (2024)

Clear and Present Needs to Improve More Capability: Deep Discharge + Partial State of Charge (PSoC)

Motivation: PSoC Operation

Re-inventing Separators for Longer & Deeper PSoC Cycle Life

Traditional Separator Design in Flooded Lead Batteries (FLB)

Major Ribs

- Ribs to positive plate for overcharge gassing escape
- Ribs to Positive plate for acid reservoir and protection of separator backweb from oxidation and shorting
- More ribs bring more protection from oxidation with <0.8mm plate spacing</p>

Traditional Separator Plays an Important Role to Deliver Good Battery Performance in FLB

Problem Statement - Acid Stratification in FLB

Acid Stratification

- Concentrated acid is generated at PAM (<u>P</u>ositive <u>A</u>ctive <u>M</u>aterial) during charging
- Immediate gaps between separator and PAM allows heavy acid to sink and lighter acid to rise
- Deep discharges + recharge accelerate acid stratification

PSoC Migrating Towards Deeper DoD No Overcharge

- Overcharging generates gas bubbles to rise, which mixes acid
- Lack of overcharge = no more gas mixing

(Normal Orientation) Comparison of electrolyte velocity profiles during charging at different timestamps [1]

Comparison of plates charging in methyl-orange dyed electrolyte at different timestamps

Deeper DoD and Less Overcharge Means More Acid Stratification

Future FLB Separator Design for PSoC

Thinking Outside the Box: Reverse Orientation of Separator Major / Minor Ribs

Proposed Solution: StratosphereTM with Reverse Orientation

Stratosphere™ Layer Addresses Acid Stratification by Intimate Contact with Uniform Compression of PAM

© 2025 Daramic, LLC. ALL RIGHTS RESERVED

Improved PSoC Cycle Life in FLB by StratosphereTM

■ VW 17.5% (Continuous) PSoC: Cycling 50% - 67.5% DoD

Cycles

■ VW 50% PSoC: Cycling 50% - 100% DoD
12V Gp48 Standard SLI Flooded Battery Results

StratosphereTM with Reverse Orientation Reduces Acid Stratification and Extends PSoC Cycle Life

n = 3 reps

StratosphereTM Mechanism (FLB) - Intimate Contact with PAM

Proof of Intimate Contact with Uniform Compression of PAM Under Reverse Orientation

© 2025 Daramic, LLC. ALL RIGHTS RESERVED ASahiKASEI 10

Schematic of StratosphereTM Mechanism (FLB)

11

Compression + StratosphereTM = Homogeneous Utilization of PAM/NAM Gelation Layer Encases PAM with Concentrated H_2SO_4 and Keeps Free-Flowing Acid for NAM

Motivation: Challenge in Battery Management System

- Most Electric Vehicles (Evs) control the AUX battery by an external Battery Management System (BMS)
- Monitoring systems can have three continuous inputs:
 - Voltage (V), Current (I), Temperature (T)
- Open circuit voltage (OCV) depends on electrolyte density
- With stratified acid, highest acid density determines the OCV, i.e. overestimates real battery State of Charge (SoC)
- Acid stratification changes Voltage/SoC relationship
 - Error in SOC estimation
- Result: undercharged battery and negative plate sulfation, leading to poor State of Health (SoH)

AABC June 20-22, 2012

12

Acid Stratification Causes BMS to Overestimate Real Battery SoC, Leading to Poor SoH

© 2025 Daramic, LLC. ALL RIGHTS RESERVED ASahiKASEI

Improved BMS Accuracy in FLB by StratosphereTM

13

☐ Tested on: Volvo S90 2019 Start-Stop Diagnostic Data Gp65 80Ah/825CCA

FLB with Stratosphere™ Improves BMS Accuracy to Predict SoH Closer to AGM VRLA Performance

SLI MF Results - BCI-5 Cycle

14

dotted red line denotes manufacturer rating

- RC: RC1 is slightly lower than rating but RC2 hits manufacture rating in the batteries with Stratosphere[™]
- CCA: Meet manufacture rating in the batteries with Stratosphere[™] (all pass)
- C20: Meet manufacture rating in the batteries with Stratosphere[™] (all pass)

Not Much Negative Impact on BCI 5-Cycle Battery Performance by Stratosphere™ with Reverse Orientation

© 2025 Daramic, LLC. ALL RIGHTS RESERVED Asahi KASEI

Accelerated Oxidation Test

15

Test Condition

- 1000ml of 1.30 Sp.Gravity H₂SO₄ @ 20°C
- Compress the cell with separator by 5kg lead block
- Temperature 75°C, Applied current: 5A
- Stop supplying current when the voltage drops below 2.6V
- Separator test samples (L 70MM x W 70MM)
 - PE (Normal Orientation)
 - PE (Reverse Orientation)
 - PE + Stratosphere (Reverse Orientation)
- Running over 100hrs

Validating Oxidation Resistance of Stratosphere™ with Reverse Orientation

StratosphereTM Mechanism - Oxidation Protection vs. PAM

Stratosphere Layer Protects Separator Against PAM Oxidation

© 2025 Daramic, LLC. ALL RIGHTS RESERVED Asahi KASEI

Conclusions

□ Proposed innovative Daramic® Stratosphere[™] technology

- Featuring a proprietary gelation composite StratosphereTM layer bound to PE Separator
 - Intimate contact with the surface of PAM under uniform compression
 - Adeptly controls the electrolyte by absorbing and expanding into the void space
 - This evolution in technology retards acid stratification
- With Separator Reverse Orientation design under compression enables
 - Homogeneous utilization of PAM/NAM
 - Gelation StratosphereTM layer encases PAM with concentrated acid and makes free-flowing acid for NAM

☐ This evolution in technology by Daramic® Stratosphere™ technology can

- Extend at least 2x the battery's PSoC cycle life in flooded lead batteries (FLB)
 - > Improve PAM utilization by applying homogeneous compression over the electrode surface
 - All while maintaining affordability of FLB
- Ensure reliable sulfate ion transport and communication with the battery management system

■ Daramic® StratosphereTM technology

- Combines the best aspects of FLB, VRLA and AGM lead battery separator technologies
 - Like no other separator developed to date
- Represents a significant advancement and evolution in the field of lead batteries
 - > Reinforcing their position as one of the most cost-effective battery technologies available today

Thank You!

Naoto Miyake Asia Technical Director

© 2025 Daramic, LLC. ALL RIGHTS RESERVED Asahi KASEI

18