

GLASS ELECTRODE MATERIAL

Asian Battery Conference – Sept 2025

"Novel glass fabric electrode material for grid replacement in lead batteries"

Mahadevaswamy .K.M

Senior Scientist

Shane Christie

CTO

Introduction to ArcActive – A little bit of history

ArcActive Fabric Structured Electrodes

Original: Carbon Fiber Fabric

BCI Innovation Award

Winner, 2020

H&V innovation: Replace Carbon base media with Glass Fiber Material (→ GEM) to realise performance &cost improvements

Summary of GEM Base 2V cell performances

Testing	GEM Performance vs Standard Neg plate		
Capacity – Reserve capacity	=		
CCA	=		2
DCA (VDA)	+++	PERFORMANCE	
Charge acceptance (EN OC)	+++		
WLT8 after aging tests (PSoC or DCRss)	+++		
50% DOD	=		
17.5% DOD	=	- LIFE	
BCIs022	+++		H&V 2V cell testing 3+ve/ 4 -ve electrodes

How to process GEM?

Roll form

Cut plates

Add Pb lugs

Stamp tabs

Active mass

Plates

Plates

GEM

GEM

GEM

PASTING

From GEM to PLATE

Process video: Continuous Lug Casting

Process video: Continuous Pasting

SEM of Active Material

Formed Plates

Fully discharged Plates

NH₄OAC treated to remove surface sulfates

Capacity

Creating a Cleaner World™

	Test sequence
1	20 hr capacity
2	10 hr capacity
3	1 hr capacity
4	3 hr capacity
5	15 min capacity
6	5 min capacity

GEM has equivalent capacity as conventional cells in both lower rate and higher rate.

Creating a Cleaner World™

- GEM shows the capacity improvement in PSOC life cycle
- GEM structure is self-optimizing during test/use

GEM has equivalent cold cranking performance to conventional plates

Dynamic charge acceptance (VDA)

Creating a Cleaner World™

Dynamic charge acceptance

2.47 Vpc, 1 min 50-90% SoC

- GEM is significantly higher in DCA current, and capacity returned in 1 min.
- Unique structure of GEM plates enables higher current acceptance with less polarizations

WLT8 Charge acceptance + DCRss

Creating a Cleaner World™

WLT8 Charge acceptance

Ford / Eckhard 2.47 Vpc recuperation

DCRss: Eckhard / Ford "TestB"

WLT8 Avg I recu (A/Ah)

- GEM exhibits a constantly better charge acceptance in terms of WLT8 I recu and DCRss I recu.
- Ctrl cell slightly increased during cycling but is still below 50% of GEM's performance

Water consumption EN/VDA

Post water loss WLT8						
GEM Ctrl						
1.0	~0.85					
A/Ah	A/Ah					
EOL saturation est. 89% 80%						

- Water loss test completed at 84 days
- Similar current profile, GEM lower water loss higher saturation retained by GEM
- Both significant lower water loss vs Carbon veil plates

BCIS-022- Traction opportunity charging

Creating a Cleaner World™

BCIS-022 FastCharge (0.5 A/Ah charge current limit)

Total CHA 5.8 h/day, DCH 38.4 Ah/day

Discharge (20% of 6hr capacity per use * 8)

6h capacity	24 Ah			
Max charge current	12 A			
Max charge voltage	2.47 V			
DCH current	2.13 A			
DCH time per use	2.25 h			
DCH capacity per use	2.13*2.25 = 4.8 Ah			

- Very rapid capacity drop of Ctrl cells in first few weeks
- GEM is very stable, and keeping the cell capacity high

Application Potential

Applications	Advantages	Customer Benefits		
Auto: Micro Hybrid	High and Sustained DCA with very low Water Loss	Lower fuel consumption and reduced emissions with maintained SOC		
Auto: EV Aux	High Charge Recoverability	Reduce the risk of low SoF, which could render the EV inoperable and create potential safety hazards.		
TRACTION	High charging speed	More opportunity charging		

For more details contact

Nicolas Clement
Director R&D
Nicolas.clement@hovo.com
+1-617-816-2397

Shane Christie
Chief Technology Officer
shane.christie@arcactive.com

GEM Pasting process

AM is injected under pressure through the injection head

MAIN ADVANTAGES of such active mass mix:

- Active mass easy to pump
- No need for temperature control (no chemical reaction with acid)

GEM roll

GEM process and plates availability

Hollingsworth and Vose has validated the capability to run GEM on multiple paper machines

Negative plates available upon request

- GEM made at H&V
- Then Lugged and pasted at ArcActive

Cold cranking SAE

260 A, -18 C

- GEM has nearly identical V10 to Ctrl cells.
- Runtime of GEM is a bit lower while entering the electrolyte transport limit.

50% DoD at 40°C (EN 50342)

Creating a Cleaner World™

- Usually positive limiting
- 108% charge factor (15.12 Ah)
- No significant difference in DCH voltage profile
- GEM recharged faster: no CC recharge stage earlier
 - GEM <4 h vs Ctrl >5 h to reach 108% CR
 - Maybe less water loss (no GEM failure so far)

Table 16 — Endurance 50 % DoD – Cycling part

Structure	N°	Step	t	U [V]	I [A]	Description	T [°C]	Data acquisition frequency	Result of measurement of each step
	20	DCH	2 h	≥ 10	5·I _n	Discharge 50 % DoD	40		U _{DCH}
50 % DoD cycling part	21	CHA	≤ 5 h	15,6ª 14,4 ^b	5·Iո	Charge 15,6V ^a for flooded Charge 14,4V ^b for VRLA Abort this step if CR ≥ 1,08	40		Recharged capacity C _{rel}
\	22	CHA	≤ 1 h	18,0	1·In	Abort this step if CR ≥ 1,08	40		Recharge with I = const
	23	RPT				Run steps 20 to 22 up to 360 times	40		

- The charging voltage for flooded batteries shall be 15.6V if not specified differently by the battery manufacturer.
- b The charging voltage for VRLA batteries shall be 14.4V if not specified differently by the battery manufacturer.

CC recharge capacity

