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S P E C I A L I T Y  C E L L U L O S E
Construction materials​
Filters​
Inks and coatings​
Casings
Food
Pharma
Personal care​
Textiles​

B I O P O L Y M E R S
Concrete additives​
Animal feed​
Agrochemicals​
Batteries
Briquetting​
Soil conditioning​

B I O V A N I L L I N
Food​
Perfumes
Pharmaceuticals​

B I O E T H A N O L
Biofuel ​
Disinfectants
Pharmaceutical industry​
Home care
Personal care
Paint/varnish​
Car care​

C E L L U L O S E  F I B R I L S
Adhesives​
Coatings​
Agricultural chemicals​
Personal care​
Home care​
Construction​

Borregaard: The World’s Most Advanced Biorefinery



Borregaard by the Numbers
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A Global Company with International Manufacturing Operations

 Six manufacturing sites on two continents

 Over 125 years in pulp & paper

 Over 100 years of experience with lignosulfonates
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Borregaard: The World’s Most Integrated Biorefinery

15.09.2025

6

Sulfite Pulping Downstream Processing
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The Critical Role and Effect of Lignosulfonates as Organic Expanders
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Mahato, J. Elec. Chem. Soc. 1977

D. Pavlov, J. Appl. Electrochem 1985

Without With

Without With

Expanders:
• Increase electrode external surface area
• Accelerate ion transport to improve 

discharge performance
• Prevent formation of PbSO4 passivation 

layer and increase cycle life

D. Pavlov, Lead-Acid Batteries Science & Technology, 2011



Lignosulfonates Deliver More than Just Cold-Crank

 Response-surface methodology 
varying lignosulfonate and carbon 
dosage

 Pre-competitive research funded by 
the CBI

 12V Flooded batteries prepared by 
East Penn

 Tested by JBI (independent 3rd party)
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Exploring the Relationship of MW on Performance

 Fractionation used to separate different MW

 Unable to achieve perfect separations

 Fits of MW used with StatEase to account for 
different MW contributions
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9

As manufactured
Low MW
Medium MW
High MW
Very High MW

MW - 1

MW - 2 MW - 3

Particle Size

Cold-Crank Charge AcceptanceLife at 17.5% DoD



Is Lignosulfonate Decomposition Responsible for Battery Failure?

“As lignosulfonate disintegrates slowly during battery operation and hence, 
the negative plates lose capacity…” (pg 312)

“When the battery is cycled at 60 C and is of the VRLA type, expanders 
containing lignin and its derivatives disintegrate…” (pg 325)

“So the capacity performance of the negative  plates depends on the nature 
of expander(s) used and on its (their) stability…” (pg 496)

“So it can be concluded that expanders contribute to building the energetic 
structure of NAM [sic]… The stability of the energetic structure on cycling 
will depend on the stability of the expander used.” (pg 498)

“the strong oxidizing atmosphere… under the internal oxygen cycle will 
degrade the organic… there is little quantitative evidence of such 
degradation…”  (pg 143)
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J. Appl. Electrochem 1985, 15, 39-52

D. Pavlov, Lead-Acid Batteries Science & Technology, 2011
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D.A.J. Rand et al, Valve-Regulated Lead-Acid Batteries, 2004



Neutron Scattering is Uniquely Capable for such Systems

Neutrons interact with the nucleus of atoms, 
whereas x-rays interact with the electron cloud

• X-rays scatter strongly off heavy elements

• Neutrons scatter off atoms in a way that is 
independent of their Z-number

• Carbon, hydrogen, and light elements are strong 
neutron scatterers, while lead is not

• Scattering for H is at least 20× that of any other 
atom – spectra dominated by hydrogenic motion

This makes neutrons sensitive to organic species, 
even if present at low concentrations in systems that 
are predominantly heavy elements

15.09.2025
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Spallation Neutron Source, Oak Ridge Nat’l Lab



INS is Vibrational Spectroscopy, but with Neutrons

Vibrational spectroscopy provides information about molecular 
structure and intermolecular interactions

• Molecules absorb at frequencies characteristic of their structure

• Common examples are IR (dipole) and Raman (polarizability)

INS uses neutrons rather than photons for vibrational spectroscopy

• Neutrons have mass, so an inelastic scattering event transfers 
both energy and momentum

• Absence of selection rules due to momentum transfer

• Opportunity for exploiting differences in isotopic sensitivity
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Grids Were Harvested for Analysis During 2V Cell Testing
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Cured Grid Formed Grid
Post-Performance 

Testing (J537)
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ILNAS 50342)



First Ever Spectroscopic Data of Lignosulfonates in a Lead Battery Electrode!
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• Samples were harvested from the same region of 
the battery grids

• Features between 500 – 800 cm-1 suggest the 
lignosulfonate content in the grid changes during 
cycling

(Dissolved)

(Precipitated)

(Destroyed)



UV-Vis Enables Quantification of Lignosulfonates in the Electrolyte

 Behavior of different lignosulfonates explored in 2V cells

 UV-vis analysis performed on electrolyte during cycling

 INS signal for cured electrode used to estimate the expected amount of lignosulfonate in the electrolyte

15.09.2025
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Additional Control Samples Measured in the UK
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ISIS Neutron & Muon Source, Rutherford Appleton Labs, UK

Simple control experiment:

• Cured electrode without lignosulfonate

• Cured electrode with 4x normal dosage of 
lignosulfonate

TOSCA – Inelastic Neutron Spectrometer

• Same technique as VISION

• 10% of the flux, so 10× the time



Direct Geometry INS Results Reveal Promising Features

• MAPS – A direct geometry Inelastic Neutron 
Spectrometer

• Enables meaningful data collection at higher 
wavenumbers, at the expense of set-up 
complexity

• Key features indicative of lignosulfonate:

• C-H stretching around 3000 cm-1

• Feature at 3500 cm-1 denotes –OH in two 
environments, suggesting H-bonding

• Absence of H2O frequency at 1500 cm-1

15.09.2025
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Confirmation of the Lignosulfonate C-H Peak

• Carbon and lignosulfonates measured separately as controls

• 1 g Carbon measured in control spectrum exceeds the total amount added to the full battery paste

• 30x more concentrated than in the experimental data

• Lignosulfonate is scaled down by 95% to achieve comparable intensity

15.09.2025
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Spectroscopic Mass is Consistent with Paste Recipe

• Lignosulfonate peak intensity was scaled to 
minimize the residual between experimental 
peaks

• Lignosulfonate quantity measured in the 
experimental sample is consistent with the 
quantity added during electrode preparation

• The quantity calculated from the sample 
mass of the control and scaling: 55 mg

• The quantity in experimental sample 
calculated from the paste recipe: 52 mg

• Data collected on samples harvested from 
different grid positions were also comparable

15.09.2025
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This result implies formation does not significantly degrade or destroy the lignosulfonate!



C-H Peak Intensities Change Minimally
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This result suggests lignosulfonate destruction may not be the sole cause of negative sulfation
• Further work is needed to investigate the electrode / electrolyte interface



Summary & Next Steps

Summary:

• Neutron scattering can detect lignosulfonate in a lead battery electrode

• The peak intensity for the electrode is appropriate for the dose of lignosulfonate added to the paste

• Peak intensity does not appear to vary significantly between stages of battery life or positions on the electrode

• UV-vis does indicate a small quantity of lignosulfonate does dissolve

Conclusions: 

• Lignosulfonates do not appreciably degrade during formation

• Bulk lignosulfonate degradation did not cause battery failure

Next Steps:

• Corroborate these findings using lignosulfonate with greater acid solubility

• Apply technique to study lignosulfonates at elevated temperatures and under PSoC cycling conditions

• Evaluate the role of interfacial lignosulfonate in battery performance through CV and Neutron Reflectometry

15.09.2025
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