

Powering the Next Generation

Southampton

Operational experience and system modelling of Dual Chemistry Energy Storage Systems

Flexible Electricity Storage Solutions Dual Chemistry LiB/VRLA Systems

GS-Yuasa Europe

Presenters: Peter Stevenson – GS Yuasa, Andrei Dascalu – University of Southampton, UK **Contributors:** Professors Suleiman Sharkh & Andrew Cruden – University of Southampton, UK

Presentation Structure

- 1. The need for Energy Storage & *Hybrid Energy Storage*
- 2. Lead acid and Li-ion ADEPT Hybrid System
- 3. Battery Modelling of Hybrid Energy Storage
- 4. Conclusions

Distributed Energy Storage

Energy Storage Power Grid Services

GSYUASA Powering the Next Generation

Low carbon power systems require storage across wide time spectrum

Storage Service	Operating Period	Storing Period
Power quality improvement	msec - minutes	minutes – weeks
Frequency response services	msec - minutes	hours
LV power flow optimisation	seconds - hours	hours
Peak demand shaving	hours	hours - days
Constraints management	hours	hours - days
Asset reinforcement deferral	hours	hours - days
Arbitrage	hours - days	days - weeks

An ESS that can provide multiple services is more commercially attractive

Time Dependence of Battery Technologies

Time Response of Energy Storage Technologies (GSYUASA

ESS Cost vs Discharge Time Constants

ESS Cost vs Discharge Time Constants

Complementary Technologies

Lithium ion strengths

- Cycle Life
- High Discharge Rate
- High Charge Rate
- Partial SOC operation
- High Efficiency
- High Energy Density

Lead acid strengths

- Economical
- Simple Control
- Abuse Tolerant
- Sustainable Materials
- Abundant Raw Materials
- Low Embodied Energy

GS Yuasa Li-ion & VRLA Hybrid ESS

GSYUASA Powering the Next Generation

ninte SLR LiB cabinets racks

ADEPT 500V Dual Chemistry Li-ion battery capacity: 75kWh VRLA capacity: 200kWh

GS Yuasa Portsmouth Port Battery System

ADEPT Micro-grid Schematic

GSYUASA

Powering the Next Generation

Rassau Industrial Estate

Micro-grid Schematic

Cell Operating Voltage Comparison

GSYUASA Powering the Next Generation

Cell Operating Voltage Comparison

GSYUASA Powering the Next Generation

Vop – SoC relationship in 48V system example

Dual Chemistry Cell Components

VRLA construction

	SLR500/1000
Electrolyte	VRLA-AGM
management	
Electrode form	Flat Plate
Electrode alloy	Pb-Ca-Sn
Negative active material	Carbon Loaded
Positive active material	High Density
Container	PP (UL94-V2)
Module support	Steel Envelope

LiB Construction

	LIM50EL-12 modules
Electrolyte management	Organic carbonate-LiPF6
Electrode form	Spiral wound
Negative active material	Carbon
Positive active material	Manganese oxide spinel
Container	Stainless steel
Module support	Steel frame with monitoring system

DC Power Sharing – ADEPT

ADEPT ESS Operation Dec 2018 - Oct 2021

ADEPT – Battery Capacity Evolution

GSYUASA Powering the Next Generation

GEMINI Dual Chemistry ESS

Powering the Next Generation

GS YUASA

Hybrid Battery Modelling

 $\begin{array}{l} R_{el} \text{ - active electrolyte resistance;} \\ R_{ct} \text{ - charge transfer resistance;} \\ C_{dl} \text{ - double layer capacitance;} \\ Z_{pmd} \text{ - constant phase elements;} \\ Z_{ed} \text{ - constant phase elements;} \\ R_{CC} \text{ - conduction element;} \\ R_{ac} \text{ - conduction element;} \end{array}$

Battery Modelling – Testing

Open circuit voltage (OCV) tests to calculate:

- Coulombic Efficiency, Energy Efficiency
- Capacity (Ah), Energy Capacity (kWh)
- OCV as function of SOC

Pulse Discharge tests to calculate;

• Internal Resistance and RC time constants

Hybrid Charge / Discharge – Constant Current

Current & Power Distribution

Hybrid Charge / Discharge – Pulse Discharge

- Dynamic Current and Power Distribution
- Energy Transfer

SWR3300 Battery

LIM50 Battery Cell

Powering the Next Generation

Experimental test Arrangement

Battery Modelling – Li-ion Parameters

GSYUASA

Battery Modelling – Lead-acid parameters

Powering the Next Generation

GSYUASA

MATLAB / Simulink Model Interface

GSYUASA Powering the Next Generation

Hybrid Battery Modelling

• Dynamic Current Sharing

Modelling a Hybrid Battery System

Hybrid Battery System Example:

- Hybrid Battery Storage, 500V, two strings
- Lead-acid and li-ion (SWR3300 & LIM50)
- 240 no. of lead-acid cells (40 no. batteries)
- 140 no. of li-ion cells
- Maximum / Minimum Voltage 568 / 440 Volts
- Li-ion Cell Voltage Range 4.06 / 3.08 Volts
- Lead-acid Voltage Range 2.35 / 1.8 Volts

Modelled Battery Storage Schematic

Hybrid Battery Modelling – String Currents

Powering the Next Generation

GSYUASA

- 50A Constant Current Discharge, 90%DOD;
- Li ion reaches around 70% DOD before lead acid starts to discharge;
- Energy / charge transfer at the end of discharge process;

45A Discharge, Constant Current (experimental data)

Hybrid Battery Modelling – String Currents

- 50A Constant Current Discharge, lead-acid 90% to 0% DOD;
- Energy transfer due to circulation currents vary;

Energy Transfer & Total Energy Discharged

GSYUASA

Hybrid Battery Modelling – String Currents

Powering the Next Generation

GS YUASA

Dual Chemistry Summary

- Zero carbon economy targets are driving force for growing ESS business
- Electricity storage is now indispensable to allow further penetration of Intermittent renewables especially wind and solar
- Energy storage provides multiple benefits across a range of operating periods.
- Lithium ion and lead acid can work in a complementary way to provide economical and sustainable solutions for many services from the same system.
- The Gemini Dual Chemistry package combines the maximum storage function with minimum power and control overheads.
- The modular container designs provide a consistent set of solutions ranging from full lithium to full lead acid and all combinations between.
- Research by University of Southampton is leading to tools to identify optimal solutions for multiple service provision.