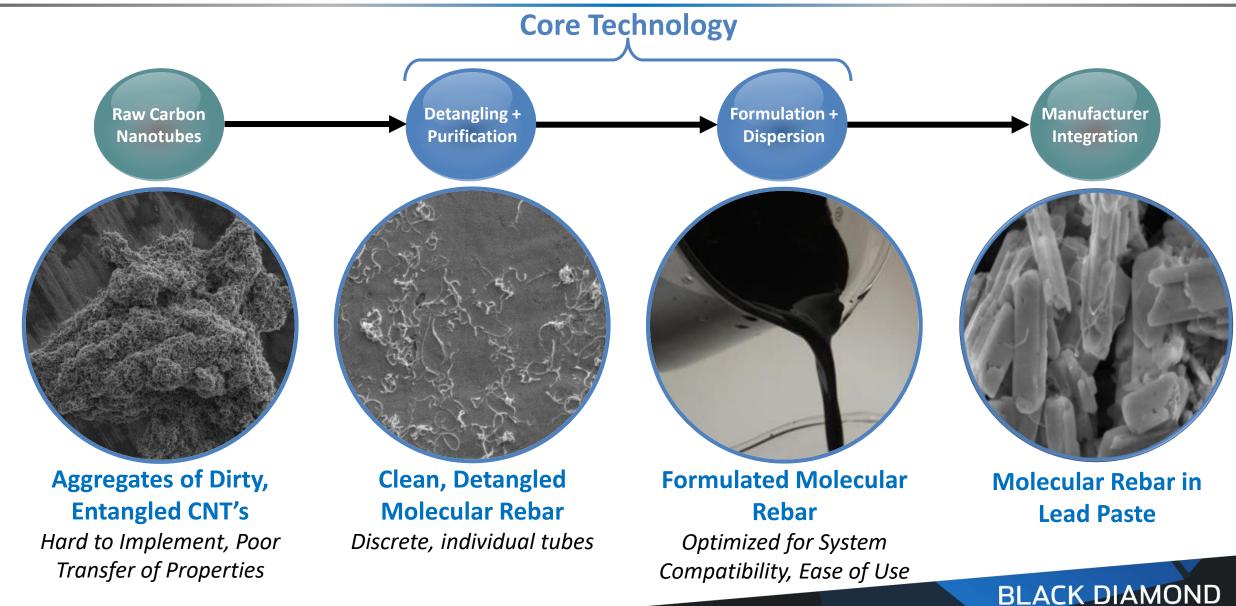
MOLECULAR REBAR®: Advanced Pb-Acid Batteries Enabled

Next Generation Solutions for EFB Batteries and Beyond

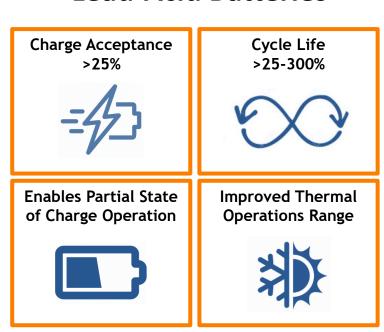
Chief Technology Officer peverill@bd-structures.com

Who We Are

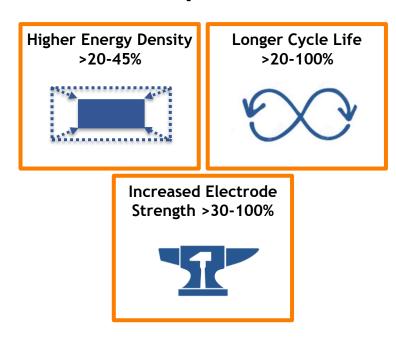
Black Diamond Structures[™] is a global nanotechnology leader with the mission to help manufacturers create the next generation of world-class batteries.


Our unique products, based on proprietary MOLECULAR REBAR® technology, together with our team of world-class nanomaterial experts alter your battery's "DNA", unlocking its full potential... fast.

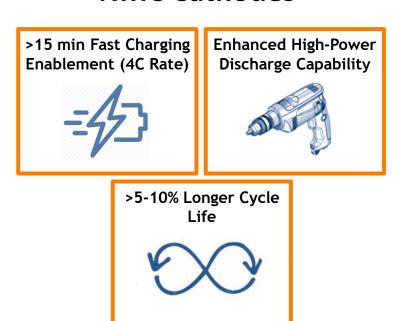
Our teams work directly with our customers to find solutions that enhance your battery's mechanical and electrochemical properties to meet market challenges for decades to come.



MOLECULAR REBAR® Technology



Providing Innovation for Three Distinct Applications


Lead-Acid Batteries

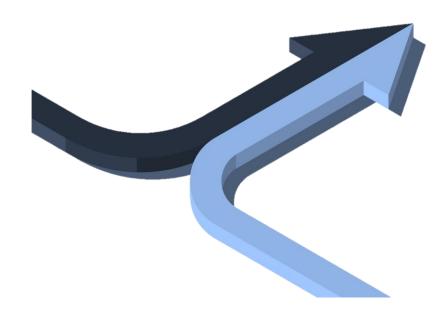
Silicon Graphite Anodes

NMC Cathodes

Our tailor-made MOLECULAR REBAR®-based formulations provide solutions for today's energy storage challenges

Augmenting Battery Material with Molecular Rebar

- MOLECULAR REBAR®-based products provide nanoscale, electroactive reinforcements which:
 - Act to bring the active material together, reinforcing electrode structure → Enhanced robustness and durability
 - Alter interparticle connectivity and morphology to enhance active material structure → Improved electrical performance
 - Overcome structural and chemical limitations that induce failure → Consistency of performance



Molecular Rebar Products Change the "DNA" of Your Battery

Pb1200 Series: Our Harmonized Lead-Acid Solutions

Advanced MOLECULAR REBAR® technology can now be combined with customtailored expander components for ultimate synergy and performance

- Our New Solutions enable you to:
 - Take dramatic steps towards meeting challenging OEM requirements
 - Replace costly or poorly balanced expander/carbon mixtures
 - Reduce costs by eliminating the need for excessive material or components
- Breakthrough made possible through strong partnership with Addenda:
 - Access to unique, alternative components
 - Scale production and global distribution of co-developed additive packages
 - Strong product uniformity and quality

The Demands of Modern Automobiles

Rapid adoption of eVehicles is challenging the micro/mild-hybrid ICE market, and the batteries which support it, to do more, for less cost

- To remain competitive, the lead-acid battery market must embrace these challenges, and drive innovation
 - The Consortium for Battery Innovation (CBI) released a technical roadmap steering the community towards success:

Performance Metrics		Unit	Common Values	2025	2030
Dynamic Charge Acceptance (DCA)	EN-50342-6	A/Ah	0.25-0.85	2.00	2.00
Run-In DCA	Ford Test B	A/Ah	0.50-1.00	1.50	2.00
High Temperature Durability	IEC, CENELEC	Units	6-16	20	20
Water Loss	EN-50342-1, CENELEC	g/Ah	1.5-6.0	<3	<3
Cold Crank / Reserve Capacity	EN, IEC, SAE	-	No Compromise	No Compromise	No Compromise

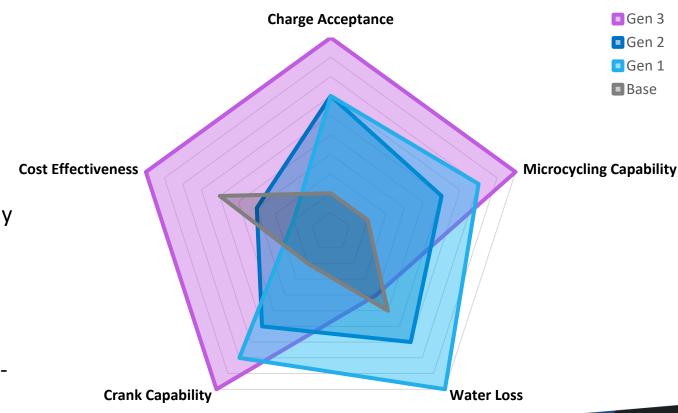
Ref: Sep 2021 CBI Technical Roadmap

- Inherent to these Performance Metrics is the need to maintain balance; a principle Black Diamond strives towards
 - Charge Acceptance vs. Water Loss / CCA
 - Performance vs. Cost.

MOLECULAR REBAR® Addresses These Demands

Since their unveiling at 14ELBC, MOLECULAR REBAR® products have continuously evolved to address the market need

1st Generation EFB Products (<2016)


- MOLECULAR REBAR® added to existing designs
- High chargeability and micro-cycling performance, offset with high water loss and cost

2nd Generation EFB Products (2017-2019)

- MOLECULAR REBAR® added alongside a commercially available expander, augmented by Advanced Carbon
- More balanced charge acceptance / water loss

3rd Generation EFB Products (>2020)

- MOLECULAR REBAR® tuned and unified with customtailored expander for maximum component synergy
- Next level of balanced performance, adjustable to the customer need

1st Generation Commercial Customer Testimonial

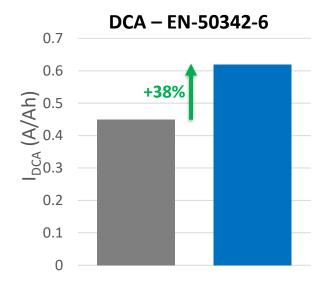
Performance Metrics		Unit	Existing Design	1 st Gen MR Solution
Capacity	EN-50342-1	Ah	59	60
Cold Crank Performance (V_{10s} / t_{6V})	EN-50342-1	V / s	7.25 / 120	7.60 / 142
Dynamic Charge Acceptance (DCA)	EN 50342-6	A/Ah	0.26	0.42
Regenerative Ability	Toyota	As	400	540
Micro-cyclability	EN-50342-6 17.5%	Units	4	7
High Temperature Durability	SAE-J2801	g/Ah	13	12

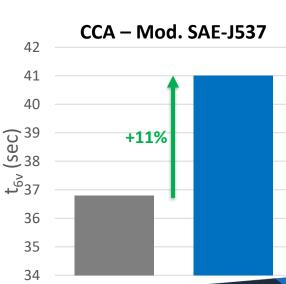
Performance Metrics		Unit	Existing Design	1 st Gen MR Solution
Reserve Capacity	SAE-J537	mins	54	56
Static Charge Acceptance (SCA)	SAE-J537	Α	6.75	8.00
Cold Crank Performance (V_{10s} / t_{6V})	EN-50342-1	V/s	7.60 / 76	7.80 / 82.5
Micro-cyclability	SBA-S0101	Cycles	5,883	35,300
Gassing Rate Characteristic	SAE-J537	mL/min	8.6	15.8

Latin American Customer:

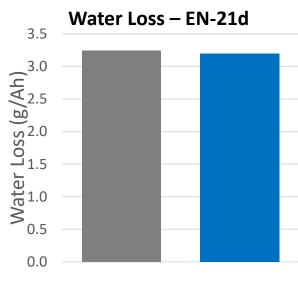
- Made an SLI perform like an EFB:
 - +62% DCA without CCA detriment
 - +35% regenerative ability
 - +75% micro-cyclability
- Almost no change to water-loss sensitive test (SAE-J2801)

Asian Customer:


- Made an SLI perform like an EFB:
 - +18% SCA without CCA detriment
 - +500% micro-cyclability
- Significant increase in gassing rate

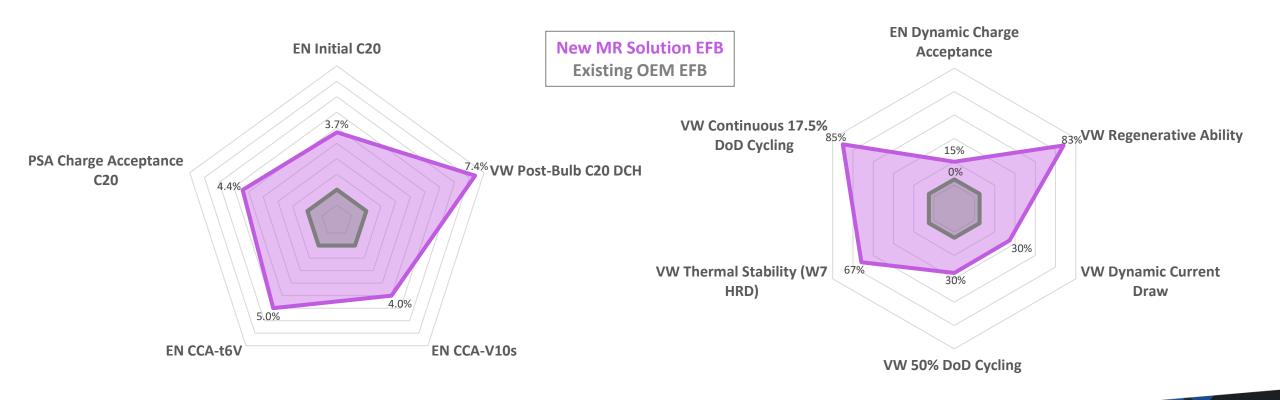

Full-scale, 12 V Automotive Battery Data

2nd Generation Commercial Customer Testimonial

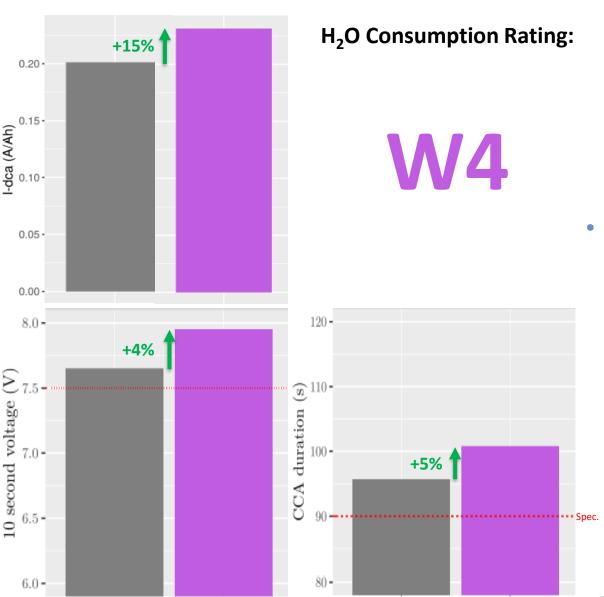

Tier 2 Manufacturer:

- Improved / Rebalanced an existing 70 Ah / L3 EFB design
 - 38% improvement in Dynamic Charge Acceptance
 - Market leading, versus store-bought Tier 1 batteries
 - 11% increase in CCA duration (SAE-J537 to t_{6V})
 - Comparable water consumption (W3 Rating)
- Achieved through:
 - Customer-specific prescription of MOLECULAR REBAR®
 - 15 L Pb1210N / 1000 kg PbO
 - 60% reduction of incumbent Advanced Carbon
 - Use of basic, pre-mixed expander components
- Results duplicated in additional models, inc. L1 design

Full-scale, 12 V Automotive Battery Data from a 3rd Party Lab



3rd Generation Manufacturer Testimonial

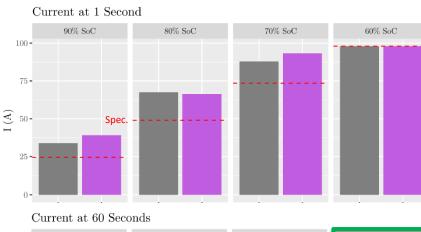

- One of our New Solutions was graduated from our 2V Lab and validated in an EU 12V build of excellent quality:
 - L1, 49 Ah, 540 A, dry battery weights within 1 g of each other

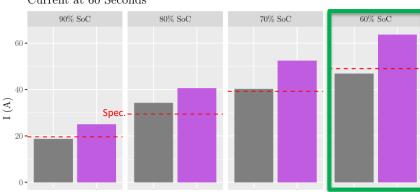
Initial Characterization Improvements

Charge Acceptance + Life Improvements

3rd Generation Manufacturer Testimonial

Components Mixed and Sourced by:

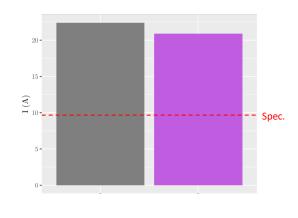



- Vs. the company's highly-optimized, OEM-targeted expander package, Our New Solution provides:
 - +15% DCA
 - Acceptable W4 water consumption rating (≤4 g/Ah, 42d)
 - ~4% improved V_{10s}
 - ~5% improved t_{6V}

OEM Charge Acceptance Requirements Met

Dynamic Current Draw (26 °C)

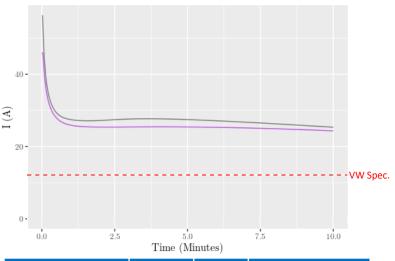
(VW 75073:2020-7.8)



- Only our New Solution meets Volkswagen's DCD requirement, Standard Build does not
 - Improved current draw at all SoC

50% SoC Charge Acceptance (0 °C)

(PSA 01553:2016-8.5.1)



This New Solution meet's PSA requirements • and delivers 6% more Ah than CON post-test

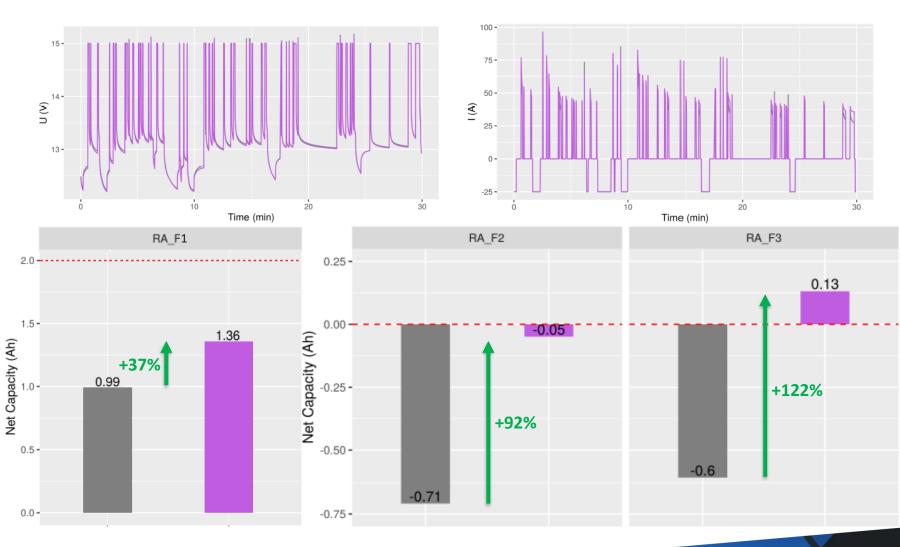
More efficient charge

Static Current Draw (0 °C)

(VW 75073:2020-7.4 = EN 50342-1:2015-6.4 \approx GB/T 22473:2008-7.5)

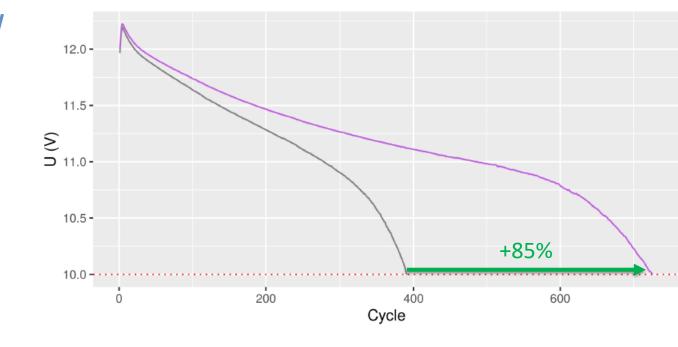
GB/T Metrics	Est. C ₁₀	I _{10mins}	I _{10mins} / (0.1*C ₁₀)	
Standard Battery	46.7	25.3	5.42	
New Solution	48.8	24.3	4.99	
Specification	-	-	FLD >3, AGM >2	
	NOTE: C	in antimonto d	from C C not moscured	

NOTE: C_{10} is estimated from C_{20} . C_{10} not measured.


The New Solution exceeds VW/EN/GB-T requirements

- Ratio influenced by higher C₁₀.

Improvements to Volkswagen Regenerative Ability


- In drive simulations, this New Solution provides performance where few other solutions can
 - VW 75073:2020-7.10
 - Protocol overview (I/V), top
- This New Solution EFB offers performance more typically observed in AGM designs
- Benefits seen across F1-F3:
 - F1 = <u>37%</u> improvement
 - F2 = <u>**92%**</u> improvement
 - F3 = <u>**122%</u>** improvement</u>

Results were unparalleled in manufacturer's experience

Dramatic Enhancements to 17.5% Micro-cyclability

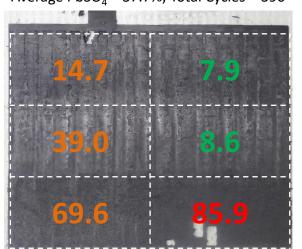
- 85% improvement in continuous 17.5% Cycling (VW 75073:2020-7.13) with this New Solution
 - CON = 392 cycles
 - New EFB Solution = 726 cycles
- 13% less water loss per cycle
 - CON = 0.136 g/cycle
 - New EFB Solution = 0.117 g/cycle

17.5% Failure Modes Mitigated by New EFB Solution

This New Solution reduced sulfation build up by 40%

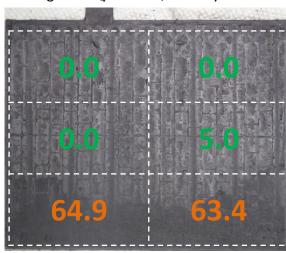
- Lower sulfation, despite 85% longer life
- Upper four plate sections were "like new" (fresh Pb)

Improved uniformity of plate utilization


- Upper four plate sections show excellent uniformity
- No left/right non-homogeneity, as with Control

Stratification-based failure delayed

- 20% reduction in SG differential despite 85% longer life
- Contributed to keeping the plate healthier, longer
- May remove the need for passive mixing elements


Control

Average PbSO₄ = 37.7%; Total Cycles = 390

New EFB Solution

Average PbSO₄ = 22.2%; Total Cycles = 726

Numbers indicate PbSO₄ Composition by XRD

Pb1200 Series: Summary and Future Directions

Our cost-effective New Solutions enable Battery Manufacturers to:

- Take dramatic steps towards meeting challenging OEM requirements
- Replace costly or poorly balanced expander/carbon mixtures
- Reduce costs by eliminating the need for excessive material or components

• Exemplar improvements from our EU Manufacturer testimonial:

- 15-120% higher charge acceptance, depending on spec
- 15-85% longer micro-cycling durability, depending on spec
- 4-5% improved cranking performance
- Water loss within acceptable limits (W4)
- No compromise to capacity

New Solutions Co-Developed with:

A commitment to the future

- We believe in continuous improvement: new, honed Molecular Rebar + Addenda solutions are under development
- We are expanding our partnership with Addenda to identify PAM-focused synergies between our technologies