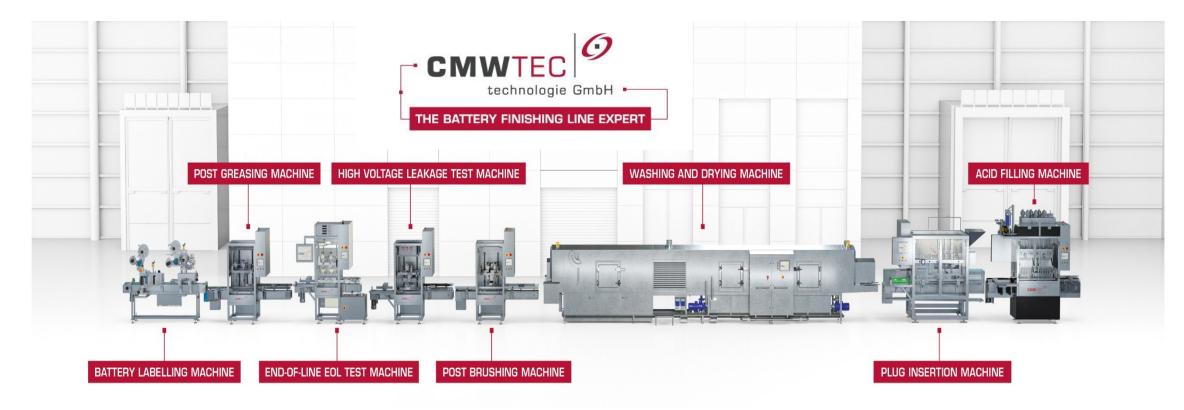


Improved High-Rate Discharge Process and Machine Design


Michael Wipperfürth, Vice President Sales - Mohammed Al-Ogaili, Project Manager Development, Tony Schröer, Business Development - Dr. Ing. Walter Wipperfürth, Senior Consultant

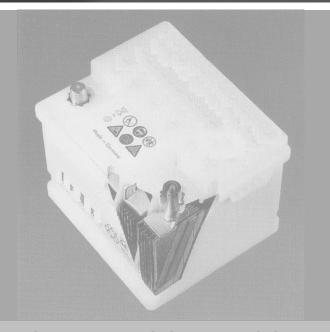
Michael Wipperfürth Vice President Sales <u>mi.wipperfuerth@cmwtec.de</u>

Premium Line at a Glance

A leading manufacturer of battery finishing line equipment for OE battery producers

Premium Line at a Glance

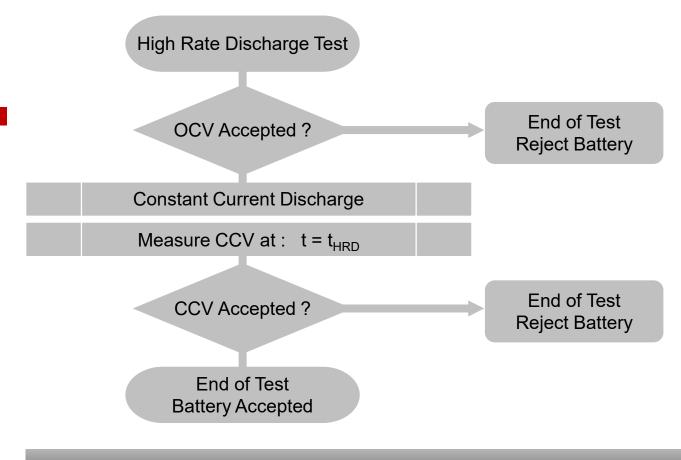
A leading manufacturer of battery finishing line equipment for OE battery producers

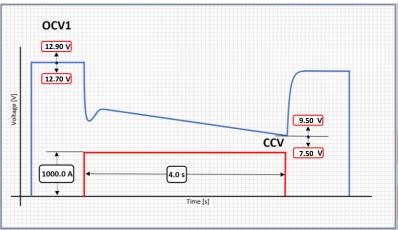


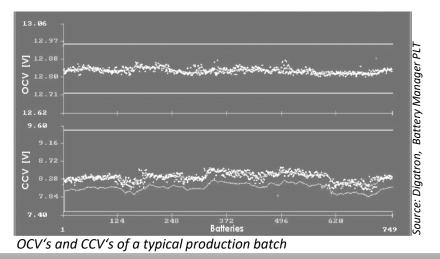
High-Rate Discharge Testing Today

100% quality test applying a high rate discharge for a few seconds after formation

Compares OCV and CCV to nominal values to sort out defective batteries before shipment to customers




Evaluates gradient delta_V of the discharge curve and yields a more reliable and accurate test result


High-Rate Discharge Testing Today

The traditional process

Constant Current (cc) discharge

High-Rate Discharge Testing New Requirements

New requirements to be realized

- More flexibility to create customized profiles
- Option to create customer-specific characteristics and signal shapes
- Evaluation of the measured data with regard to internal resistance, impedance and relaxation voltage
- Ability to run multiple profiles in a sequence
- dV/dt detection of the load jump as well as of the discharge gradient
- Provision of all recorded data at PLC level for pick-up by higher-level SCADA systems

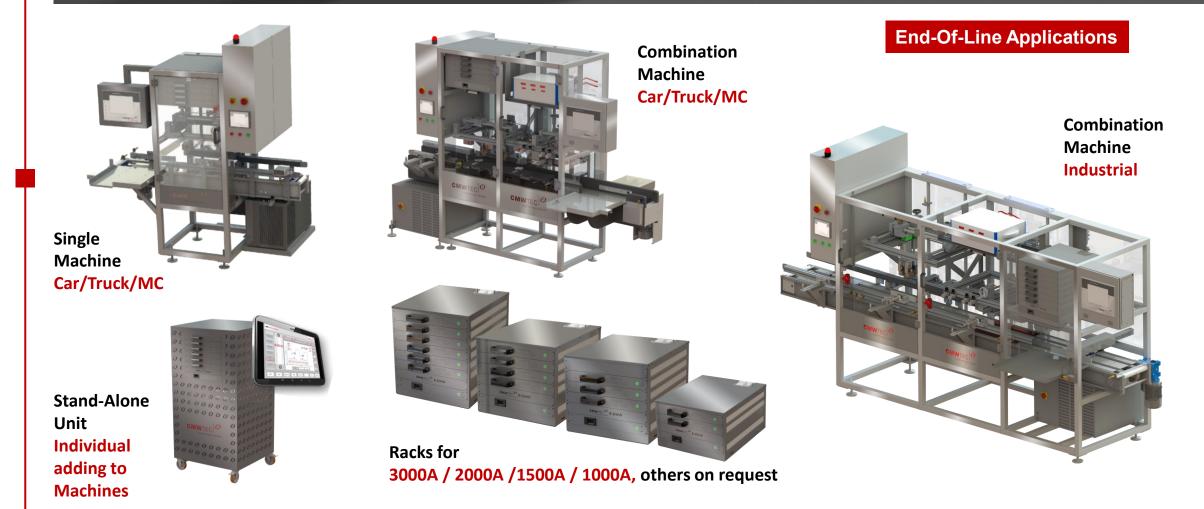
- Robust machine design, suited to operate in heavy duty environment
- Space saving design without bulky electronic load cabinets
- Free access to relevant components to adjust the machine and for maintenance purposes
- Fail safe operation to eliminate production downtime

Click here to watch the full video https://youtu.be/CehHLBnIXCA

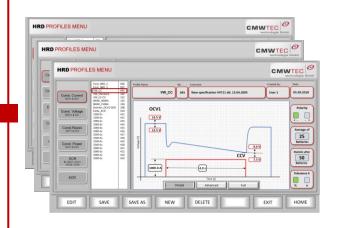
New Electronic Load and Machine Design

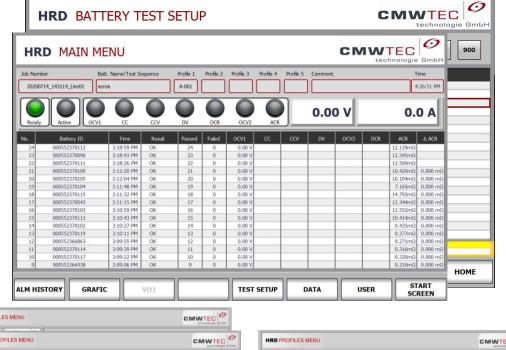
Water-cooled Electronic Load

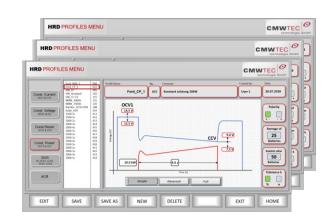
- Small & large applications from 500A to 3000A
- Modular and scalable design by 500A plug-in modules
- High dynamic MOSFET technology
- Extremely small footprint due to new water-cooled heatsink design
- Fully enclosed and sealed. Suited for tough environmental conditions
- Integrated in the machine design. No extra space required
- Fail-Safe due to intelligent management of power strings inside 500A modules
- No noise

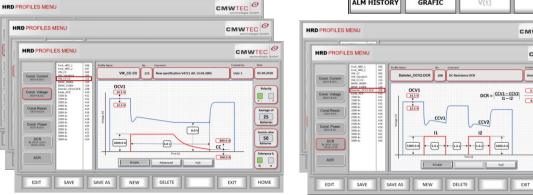


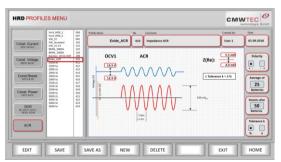
End-Of-Line Test Machine (EOL)

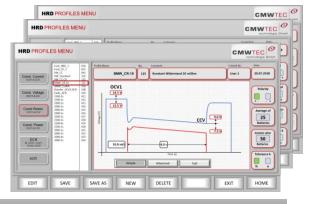







EOL Process Control Software




HRD PROFILES MENU

Improved High Rate Discharge Process and Machine Design

Liner 1

5.5 m() Polarity

05.09.2018

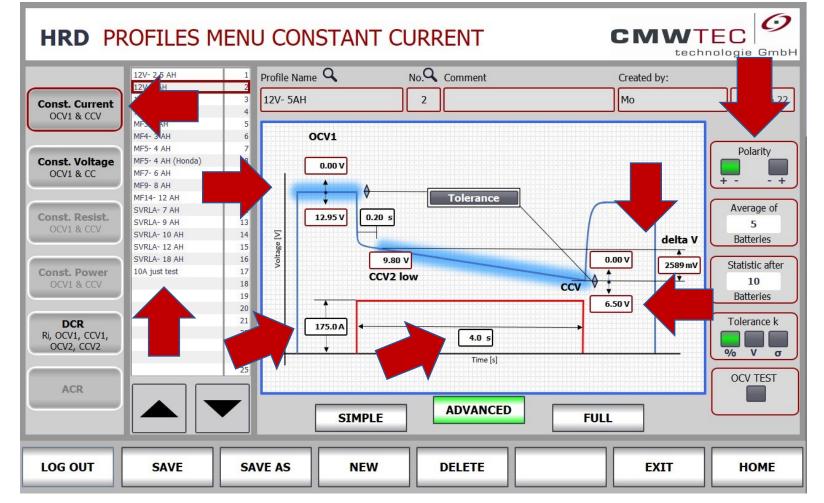
Average of 25 Batteries

Statistic after 50 Batteries

Tolerance

HOME

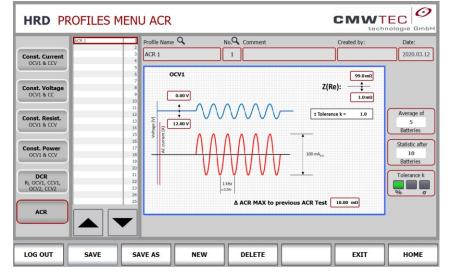
High-Rate Process Control Software


) Num 20191:	ber 105_135121_Line01	Batt. Name/Test S	Gequence	Profile 1 I-001	Profile 2	Profile 3	Profile 4	Profile 5	Comment			(Time 2:23:53 ₽№
Ready	Active O		CCV	DV	DCR	OCV2	ACR		0.00	v		0.	0 A
.	Battery ID	Time	Result	Passed	Failed	OCV1	сс	ссу	DV	OCV2	DCR	ACR	Temp
10	SCANNER OFF	1:55:18 PM	OK	9	1	12.55 V	14.8 A	12.20 V					
9	SCANNER OF	1:55:12 PM	ОК	8	1	12.85 V	14.8 A	12.58 V					
8	SCANNER OFF	1:55:03 PM	ОК	7	1	12.65 V	14.8 A	12.41 V					
7	SCANNER OFF	54:56 PM	OK	6	1	12.91 V	14.6 A	12.62 V					
6	SCANNER OFF	1:54:50 PM	OK	5	1	12.62 V	14.6 A	12.25 V					
5	SCANNER OFF	1:54:41 PM	U <ocv1min< td=""><td>4</td><td>1</td><td>7.75 V</td><td>0.0 A</td><td>0.00 V</td><td></td><td></td><td></td><td></td><td></td></ocv1min<>	4	1	7.75 V	0.0 A	0.00 V					
4	SCANNER OFF	1:54:37 PM	OK	4	0	12.81 V	14.7 A	12.47 V					
3	SCANNER OFF	1:54:31 PM	OK	3	0	12.68 V	14.6 A	12.43 V					
2	SCANNER OFF	1:54:25 PM	OK	2	0	12.99 V	14.8 A	12.68 V					
1	SCANNER OFF	1:51:35 PM	OK	1	0	12.69 V	14.7 A	12.44 V					
5	SCANNER OFF	1:06:50 PM	Current	0	5	12.69 V	0.0 A	12.69 V					
4	SCANNER OFF	12:25:55 PM	Current	0	4	12.68 V	0.0 A	12.69 V					
3	SCANNER OFF	12:17:00 PM	Current	0	3	12.68 V	0.0 A	12.69 V					
2	SCANNER OFF	12:16:57 PM	Current	0	2	12.69 V	0.0 A	12.69 V					
1	SCANNER OFF	12:02:07 PM	Current	0	1	12.68 V	0.0 A	12.68 V					
1	SCANNER OFF	11:21:15 AM	ОК	1	0	12.69 V	0.0 A	11.39 V		12.38 V	7.36mΩ		

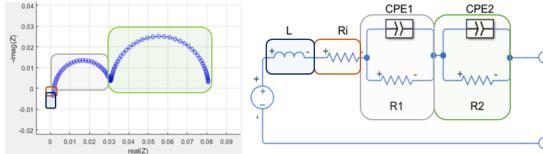
Main Screen Menu

- Last Test Results Overview
- Battery ID
- Job Number and Info
- Selected Profile(s)
- Live Test Values

High-Rate Process Control Software


Example: Constant Current Profile

- Setting of test values
- Setting of test time
- Setting of min/max limits
- and much more like Polarity, Statistic, etc.
- Individually for each battery model

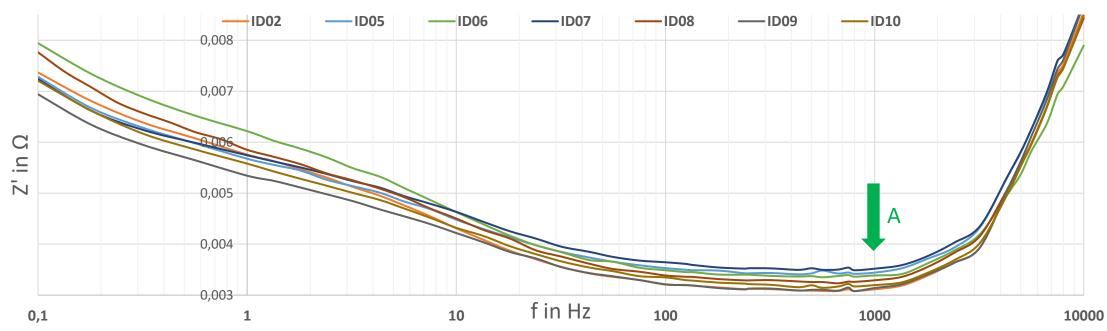


High-Rate Discharge Testing with SerEIS Impedance Testing

HRD with AC Impedance: We have the solution. Documented by the CMWTEC R&D Laboratory!

- Evaluations of the impedance spectroscopy during and after formation allow a reliable statement about the quality of the formation process
- Internal resistance values Re {Z_{1kHz}} indicate the possibility of measuring and documenting quality of electrolyte infiltration and formation on the unopened battery
- With the new CMWTEC's HRD soft- and hardware concept it is now possible
 to also perform impedance spectroscopy to detect production errors

SerEIS Test device Front side view



SerEIS Test device Rear side view

Highlights of End-Of Line & SerEIS Impedance Testing

The diagram below shows the results of a frequency spectrum of SerEIS (0.1 Hz up to 10 kHz) in comparison with the frequency point of a common ACR-tester (with only 1 kHz) indicated with the green arrow A.

Real Z' after HRD (1st day)

0

Highlights of End-Of Line & SerEIS Impedance Testing

The figure shows the main screen of the HMI with result fields.

On the right columns we see the values of impedance test ACR and Delta-ACR (will show in case there were second ACR-test.

An entire packet of results with test setting will be stored in the test report as CSV.

Job Number 20200714_143114_Line01		. Name/Test Se is	quence	Profile 1 A-001	Profile 3	Profile 3 Profile 4 Profile			file 5 Comment			Time		
Ready	Active	CC	CCV	DV	DCR	OCV2	ACR		0.0	o v			A	
No.	Battery ID	Time	Result	Passed	Failed	OCV1	СС	CCV	DV	OCV2	DCR	ACR	Δ ACR	
24	000552370112	3:18:59 PM	OK	24	0	0.00 V						12.129mΩ		
23	000552370096	3:18:43 PM	OK	23	0	0.00 V						12.345mΩ		
22	000552370111	3:18:26 PM	OK	22	0	0.00 V						12.509mΩ		
21	000552370109	3:12:20 PM	OK	21	0	0.00 V						10.420mΩ	0.000 m	
20	000552370105	3:12:04 PM	OK	20	0	0.00 V						10.104mΩ	0.000 m	
19	000552370104	3:11:48 PM	OK	19	0	0.00 V						7.165mΩ	0.000 m	
18	000552370115	3:11:32 PM	OK	18	0	0.00 V						14.793mΩ	0.000 m	
17	000552370043	3:11:15 PM	OK	17	0	0.00 V						12.344mΩ	0.000 m	
16	000552370103	3:10:59 PM	OK	16	0	0.00 V						12.552mΩ	0.000 m	
15	000552370113	3:10:43 PM	OK	15	0	0.00 V						10.414mΩ	0.000 m	
14	000552370102	3:10:27 PM	OK	14	0	0.00 V						0.435mΩ	0.000 m	
13	000552370119	3:10:11 PM	OK	13	0	0.00 V						0.277mΩ	0.000 n	
12	000552366863	3:09:55 PM	OK	12	0	0.00 V						0.271mΩ	0.000 m	
11	000552370114	3:09:39 PM	OK	11	0	0.00 V						0.316mΩ	0.000 m	
10	000552370117	3:09:22 PM	OK	10	0	0.00 V						0.320mΩ	0.000 m	
9	000552366938	3:09:06 PM	OK	9	0	0.00 V						0.210mΩ	0.000 m	

CMWTE

 \mathbf{O}

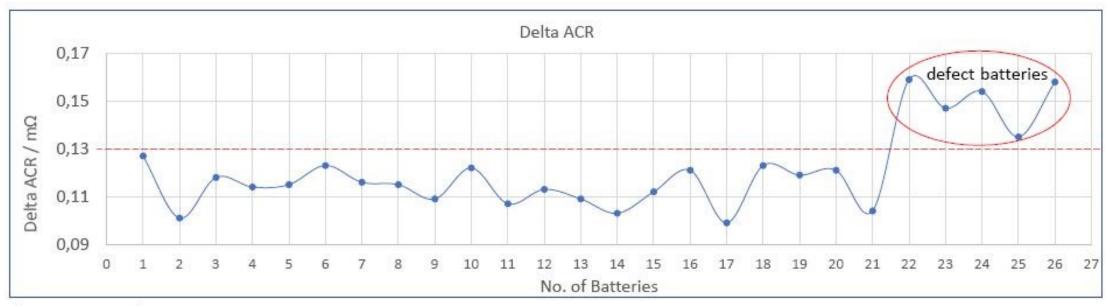
Highlights of End-Of Line & SerEIS Impedance Testing

In the Battery Test Setup, you can choose **up to 5 test profiles** to be run **on each battery**. The tests could be OCV, HRD with different modes CC and/or CV, DCR and ACR (SerEIS).

For Example, you can run for

1 battery type 2 test profiles

HRD BATTERY TEST SETUP


technologie Gmb												пbН					
Find Battery Name Q No. Q profil 1 1							• 100 20			300 300 40			40	0 500 6	500 700	800 900	
No.	Batt. Name/Test Sequence	[V]	[Ah]	Pro	file 1	Profi	le 2	Profi	le 3	Profile	4	Profi	le 5	Comment			
1	profil 1	12	100	Ι	3		0		0		0		0	nur test			
2	test2	12	55	Ι	2		0		0		0		0				
3	c.u.	12	50	U	1		0		0		0		0				
4	50A	12	50	Ι	2		0		0		0		0				
5	DCR01	12	50	D	1		0		0		0		0				
6	double test	12	50	Ι	2	Ι	3		0		0		0				
7	DELTA V	12	50	Ι	4		0		0		0		0				
8	Ri	12	50	Ι	2	Α	1		0		0		0				
9	test1	12	50	Ι	1		0		0		0		0				
10	,	0	0		0		0		0		0		0				
11		0	0		0		0		0		0		0				
12		0	0		0		0		0		0		0				
13		0	0		0		0		0		0		0				
14		0	0		0		0		0		0		0				
15		0	0		0		0		0		0		0				
16		0	0		0		0		0		0		0				
17		0	0		0		0		0		0		0				
18		0	0		0		0		0		0		0				
	est Setup:														Current User: No Use	er	
9	test1	12	50	I	1		0		0		0		0				
EDIT SAVE / LOAD DATA FILE				SAV	E AS			NEW			DEL	ЕТЕ		PROFILES	ACTIVATE	Номе	:

Highlights of End-Of Line & SerEIS Impedance Testing

Impedance analyses in combination with HRD (High rate discharge test) in early-stage detection

More than 25 FLA batteries from a production line with 5 common defects were prepared for this test. By using both impedance analysis and high rate discharge test we could detect all 5 defect batteries. The diagram below shows the differences between the impedance values before and after High rate discharge test.

(Delta ACR = ACR2-ACR1), were ACR1: impedance before HRD and ACR2: Impedance after HRD test.

Visit our booth for more information's

A leading manufacturer of battery finishing line equipment for OE battery producers

Stay interested what's coming up next. visit our website <u>www.cmwtec.de</u>